

XFT Review

XFT

Upgrade

XFT Stereo Finder Design Review

(FNAL)

T. Shaw

S. Holm

Project Overview

XFT

Upgrade

Stereo XFT Upgrade

- add 3 stereo layers
 SL7, SL5,SL3
- L1 data path through "SLAM"
- New "Stereo" L2 data path

Stereo Implementation

XFT

Upgrade

Stereo Finder

- Plan to instrument SL3,SL5, and SL7
- Each Finder will cover a 30° section

Each SL will require 12 Stereo Finders, for a total of 36 production boards.

Finder Inputs

XFT

Upgrade

A Finder "cell" is defined as a group of 12 TDC wires.

Previous Finder algorithms worked off a "core" of 4 cells plus neighbors.

4 cells represent data from 48 wires, or half a TDC.

Finder Algorithm

XFT

Upgrade

Finder Algorithm

- similar to axial XFT
- utilizes mask sets to match possible tracks
- more details on this from Scott Holm

Gray Wires indicate 12 wire mask for the depicted track segment

Implementation

XFT

Upgrade

Finder algorithm is being implemented in an Altera EP2S60 FPGA. Each FPGA will handle 8 cells.

	# of Finder Cells in COT layer	# of 8 cell cores in COT layer	# of FPGAs required for 30° (Board)
SL7	432	54	4.5 -> 5
SL5	336	42	3.5 -> 4
SL3	240	30	2.5 -> 3

TDC Inputs

XFT

- The source of the XFT data are TDC modules.
- These modules contain timing information for 96 wires.
- The TDC will produces 6 bits of data (6 time slices) for each wire.
- This data identifies whether a wire has a "hit" on it for a particular time slice.
- There are 6 identified time slices within each 396ns period, or 3 CDF_Clock cycles.

TDC Inputs

XFT

Upgrade

In addition to sending up the hit information for each wire, it is desirable to tag the information with a Beam Zero marker, to identify its position in time as well as some type of identification tag to mark the source of the data.

TDC Inputs

XFT

Upgrade

Plan is to send the data from the TDC modules to the XFT modules via an 8B/10B encoded serial optical bitstream.

Furthermore, we will limit the data rate on such a link to ~1.25Gbps which is supported by a wide variety of commercial products available for Gigabit Ethernet.

TDC Data Representation

XFT

Upgrade

Data Fiber 2 carries info from 48 wires

Data Fiber 1 carries info from 48 wires

96 TDC wires

Data Packing using 16 bit Serializer

XFT

Upgrade

Data Fiber # 1 carries information from TDC wires 0-47

Data Word	Beam_Zero	Word Zero Flag	Group	Wire data
	Marker 1 bit	1 bit	Identifies 2 bits	time slice (0-5) 12 bits
1	beam_zero	1	00	t0 (A0-A11)
2	beam_zero	1	01	t0 (B0-B11)
3	beam_zero	1	10	t0 (C0-C11)
4	beam_zero	1	11	t0 (D0-D11)
5	beam_zero	0	00	t1 (A0-A11)
6	beam_zero	0	01	t1 (B0-B11)
7	beam_zero	0	10	t1 (C0-C11)
8	beam_zero	0	11	t1 (D0-D11)
9	beam_zero	0	00	t2 (A0-A11)
10	beam_zero	0	01	t2 (B0-B11)
11	beam_zero	0	10	t2 (C0-C11)
12	beam_zero	0	11	t2 (D0-D11)
13	beam_zero	0	00	t3 (A0-A11)
14	beam_zero	0	01	t3 (B0-B11)
15	beam_zero	0	10	t3 (C0-C11)
16	beam_zero	0	11	t3 (D0-D11)
17	beam_zero	0	00	t4 (A0-A11)
18	beam_zero	0	01	t4 (B0-B11)
19	beam_zero	0	10	t4 (C0-C11)
20	beam_zero	0	11	t4 (D0-D11)
21	beam_zero	0	00	t5 (A0-A11)
22	beam_zero	0	01	t5 (B0-B11)
23	beam_zero	0	10	t5 (C0-C11)
24	beam zero	0	11	t5 (D0-D11)

Optical Fiber Rates

XFT

Upgrade

If the data is packed as in the previous example, We would need a data rate of:

20 encoded bits/16 data bits x 16 data bits x 24 words ÷ 396ns = 1.21 Gbps

This would require a Serdes clock period of 16.5 ns (CDF_Clock ÷ 8)

The recommended clock jitter of the Serdes parts is ~40ps pk-pk. It would be very difficult to achieve this with detector clock. We may run the links with 62.500 MHz oscillator which is slightly faster (16ns clock period) than CDF_Clock ÷ 8.

-> some kind of buffer/FIFO to smooth out clock differences

Data flow TDC-> Finder

XFT

O/E and E/O Examples

XFT

Upgrade

M2R-25-4-1-TL Optical Gigabit Ethernet/Fibre Channel 850nm SFF 2x5 Dual Receivers -- 1.25/1.0625GBaud --- +3.3V

Dual Receivers

Features

- 1.25 Gbps Gigabit Ethernet Compliant
- Metalized Plastic Package
- TTL Signal Detect output
- AC coupled PECL level outputs
- Low profile fits Mezzanine Card Applications
- Single +3.3V Power Supply
- Wave Solderable / Aqueous Washable
- Class 1 Laser Safety Compliant
- UL 1950 Approved

PRODUCT OVERVIEW

The M2R-25-4-1-TL Small Form Factor (SFF) optical dual receiver modules are high performance integrated duplex data links for uni-directional communication over multimodeoptical fibre. The M2R-25-4 module is

M2T-25-4-1-L Optical Gigabit Ethernet/Fibre Channel 850nm SFF LC 2x5 Dual Transmitters - 1.25/1.0625GBaud -- +3.3V

Dual Transmitters

Features

- 1.25 Gbps Gigabit Ethernet Compliant
- 1.0625Gbps Fibre Channel Compliant
- Metalized Plastic Package
- AC coupled PECL level Inputs
- Low profile fits Mezzanine Card Applications
- Single +3.3V Power Supply
- Wave Solderable / Aqueous Washable
- Class 1 Laser Safety Compliant
- UL 1950 Approved

PRODUCT OVERVIEW

The M2T-25-4-1-L Small Form Factor (SFF) optical dual transmitter modules are high performance integrated duplex data links for uni-directional communication over multimode optical fibre. The M2T-25-4 module is specifically designed to used in Gigabit Etherent/ Fibre

Serializer/De-Serializer

XFT

Upgrade

TLK1501 0.6 TO 1.5 GBPS TRANSCEIVER

SLLS428F - JUNE 2000 - REVISED JANUARY 2004

- Hot Plug Protection
- 0.6 to 1.5 Gigabits Per Second (Gbps) Serializer/Description
- High-Performance 64-Pin VQFP Thermally Enhanced Package (PowerPAD™)
- 2.5 V Power Supply for Low Power Operation
- Programmable Voltage Output Swing on Serial Output
- Interfaces to Backplane, Copper Cables, or Optical Converters
- Rated for Industrial Temperature Range

- On-Chip 8-Bit/10-Bit (8B/10B)
 Encoding/Decoding, Comma Alignment,
 and Link Synchronization
- On-Chip PLL Provides Clock Synthesis From Low-Speed Reference
- Receiver Differential Input Thresholds 200 mV Minimum
- Typical Power: 250 mW
- Loss of Signal (LOS) Detection
- Ideal for High-Speed Backplane Interconnect and Point-to-Point Data Link

Optical Mezzanine Cards

XFT

Upgrade

Two types of optical Mezzanine Cards will be used on the Stereo XFT

- A four channel Receiver Module (RX_MEZZ) to receive the TDC data
- A four (six?) channel Transmitter Module (TX_MEZZ) to drive data to the SLAM

RX Mezzanine

XFT

Serial Input data - Electrical

XFT

Deserialized Data

XFT

Finder Outputs

XFT

Upgrade

Stereo Finders will output data to L2 and SLAM boards. SLAM boards will provide inputs to XTRP.

L2 output estimated to be ~120 bytes per board. We will use a serial optical link utilizing 8B/10B format. The data will be sent to a Pulsar Card which uses the TX_Mezz.

SLAM output requires 12bits/cell for each Finder Module. This link will use fiber optic technology similar to TDC->Finder links.

SLAM Data Format

XFT

Upgrade

Data Word	Beam_Zero Marker 1 bit	Start Event Flag 1 bit	End Event Flag 1 bits	Error Flag 1 bit	Pixel data 12 bits
1	beam zero	1	0	error	1 st cell data(11:0)
2	beam zero	0	0	error	cell data(11:0)
3	beam_zero	0	0	error	cell data(11:0)
4	beam_zero	0	0	error	cell data(11:0)
	beam_zero	0	0	error	cell data(11:0)
N-1	beam_zero	0	0	error	cell data(11:0)
N	beam_zero	0	1	error	last cell data(11:0)

Posible Data Transmission Format between Stereo Finder and the SLAM

XFT Stereo Block Diagram

XFT

FPGA Download

XFT

Upgrade

There are 8 EP2S60 FPGAs on each board

Finder FPGAs (Qty 5)

Downloadable via

- JTAG
- One of two Altera Configuration Devices (writeable Flash memory via VME or JTAG)
- Pixel Driver FPGA (SLAM output) (Qty 1)

Downloadable via

- JTAG
- One of two Altera Configuration Devices (writeable Flash memory via VME or JTAG)
- L2 Output FPGA (Qty 1)

Downloadable via

- JTAG
- One of two Altera Configuration Devices (writeable Flash memory via VME or JTAG)
- VMEbus Interface FPGAs (Qty 5)

Downloadable via

- JTAG
- One Altera Configuration Devices (writeable Flash memory via JTAG)

Power Estimates

XFT

Upgrade

Power requirements are summarized in the table below. DC-DC converters will be used to generate the +3.3V, +2.5V and +1.2V power rails. The +3.3V rail is generated by a Datel UNR-3.3/20-D5 DC-DC converter which is capable of delivering up to 20Amps of 3.3V.

+2.5V and +1.2V are produced by Datel's LSM-2.5/10-D3 and LSM-1.2/10-D3 respectively. Each of these is capable of providing up to 10Amps is uses the +3.3V rail for conversion.

Power Rail	Estimated Power (W)
+5V	0.5
+3.3V	15.2
+2.5V	6.6
+1.2V	4.9

Rough look at layout

XFT

Upgrade

TDC INPUTS 4 CHANNELS	FINDER FPGA		VMEbus FPGA	
TDC INPUTS 4 CHANNELS	FINDER FINDER FPGA			
TDC INPUTS 4 CHANNELS	FINDER FPGA			
OUTPUTS TO SLAM MODULE 4 CHANNELS		Pixel Driver FPGA	L2 Output FPGA	OUTPUT TO L2

9U x 400mm Main Module

Transition Module

XFT Stereo Layout -1

XFT

XFT Stereo Layout -2

XFT

Schedule

XFT

Upgrade

Stereo Finder Schedule (set in June'04)

Finish Schematics early Sept'04

Finish Layouts early Oct'04

Preproduction Board under test early Dec'04

Testing complete early Mar'05

Production Readiness Review 3/21/05

Production checkout done late July'05